Seminar on Reliability in Distributed Systems



Reliable and highly-available Systems

The following slides are mostly based on ,,Reliable distributed
systems” by Kenneth P. Birman. The quotes are also taken from
there.




Some Quotes on Reliability

SzUnfortunately, for three decades, the computing industry has tried (and failed)

to make the mechanisms of reliable, secure distributed computing transparent”
(xxi)

, 1here just isn't any way to hide the structure of a massive and massively
complex distributed system scattered over multiple data systems. We need to
learn to expose system structure, to manage it intelligently but explicitly and to

embed intelligence right info the application so that the application can sense
problems.

LWhen reliability also entails high availability we are in trouble”

,Nefther NET nor J2EE really has the features needed fo promote high-
avallability or other kinds of quality of service guarantees.“(234)

The goal is to increase reliability and availability even with systems NOT
initially built this way — because they are the reality today




Reliability
Avallability

Security

Again, correctness is not just consistency. It includes LIVENESS. A mission
critical system needs to make progress as well.




Reliability Engineering — what does it take?

-Security engineering courses

-System management courses

-Large scale architecture and structure courses
-Modeling courses

-Risk analysis and management courses

But most important according to Birman is the development of a ,reliability
mindset” that simply keeps the non-functional requirements always close to
ones mind. It starts simply with asking ,what happens to availability if
component XYZ does not respondfrunfwork anymore?“ And , how do | detect
such a failure?“




Partitioning in a mission critical application

aircrafts

@
Q \ Client

: ~ Client
Q“— Client

Client

Disconnected

Partitioned
network

Strategy: just wait till all components are up and running again and retry

requests until then. All components are assumed to restart after some time
successfully.

But: this strategy does not guarantee LIVENESS of your real-time
application. See transaction protocols later. (Birman XXV)




Reliability Questions

-What is the role of replication in reliable systems?
-What is needed to achieve safe replication?

-How are failures detected and why is this important?
-How are systems updated while still being accessible?
-What happens if failures occur during updates?

-How do new processes join a group and what is the role of
group membership?




Failure Places

-Network: partitioning
-CPUfHardware: instruction failures, RAM failures
-Operating System: Crash, reduced function

-Application: crash, stopped, partially functioning

Unfortunately in most cases there is no failure detection service
which would allow others to take appropriate action. Such a service is
possible and could detect even partitionings etc. through the use of
MIBs, triangulation etc. Applications could track themselves and
restart if needed.




Failure Types

-Bohr-Bug: shows up consistently and can be reproduced.
Easy to recognize and fix.

-Heisenbug: shows up intermittently, depending on the order
of execution. High degree of non-determinism and context
dependency

Due to our complex IT environments the Heisenbugs are both more
frequent and much harder to solve. They are only symptoms of a
deeper problem. Changes to software may make them disappear - for
a while. More changes might caues them to show up again. Example:
deadlock ,,solving” through delays instead of ressource order
management.




Failure Models

-Failstop: A machine fails completely AND the failure is
reported to other machines reliably.

-Byzantine Errors: machines or part of machines, networks,
applications fail in unpredictable ways and recover partially.

Many protocols to achieve consistency and availability make certain
assumptions about failure models. This is rather obvious with
transaction protocols which may assume failstop behavior by its
participants if the protocol should terminate.




Failures and Timeouts

A timeout is NOT a reliable way to detect failure. It can be

caused by short interruptions on the network, overload
conditions, routing changes etc.

A timeout CANNOT distinguish between the different places
and kinds of failures.

It CANNOT be used in protocols which require failstop
behavior of its participants

Most distributed systems offer only timeouts for applications
to notice problems

A timeout does not allow conclusions about the state of participants.
It is unable to answer questions about membership (and therefore
responsibility). If timeouts ARE used as a failure notification ,,split-
brain“ condidtions (e.g. airtraffic control) can result (Birman 248)




Replication and Membership

Replication of Data

Replication of Processing

Replication is at the core of reliability and availability. It absolutely
requires a clear and performant way to decide about the membership
within a replication group. Who is replicating what in which location?

The question of membership includes other problems in distributed
systems: consistency, agreement, availability and performance




Static Membership: Quorum Update and Read Arc.

® " @
RO

RQ

F

Majority rulez! Not all known processes N that replicate a value X need
to be reached in every update. But the number of processes to read
(Read Quorum RQ) and the number to write (Write Quorum WQ) need
to be at least N+1. E.g. RQ==2 and WQ==4 in a system of N==




Scalability of Quorum Update and Read Arc.

-The write quorum needs to be smaller than the number of
processes to achieve fault tolerance. This implies that the number
of reads JUST TO READ a variable needs to go up.

-Reading X is therefore tied to the speed of RPCs to other
processes.

-Communication overhead through pending operations slow the
system down by O(n-square)

-Updates require a vote/agreement from several machines. The
current values is decided through the latest timestamp

Systems with fixed, known membership are quorum based. A majority

of participants needs to see the operation before it can be committed.
Agreement is reached through vote collection.




Dynamic Group Membership Services

° Multicast based
@\ ° membership service

Examples are: Horus, Spread. (Birman 251ff). Scales almost linearly
up to 32 members. 80000 updates in a group of five (no disk access,
failstop nodes). Application does not wait for acknowledge.




Time in Distributed Systems

- No global time
- logical clocks

- vector time

There is no global time in distributed systems. Logical time modelled

as partially ordered events within a process or also between
processes.




Processes, Time and Events: internal time

el e2
p1 i ! >
Logical unit of
time
p2 ! i >
e Logical e2

unit of
time

Events are partially ordered within processes according to a chosen

causal model and granularity. E1 < e2 means e1 happend before e2.
The time between events is a logical unit of time.




Processes, Time and Events: external events

el e|2 Send(p1,m)

el e2 Recv(p2,m) ed

deliver(p2,m)

Events delivered through messages clearly relate processes and their
times and events. This external order is also a partial order of events
between processes: send(p1,m) < recv(p2,m)




No Global Time in Distributed Systems

t0
p1_ |
| \
et o
p2 \ }
e2
p3 o .

The processes p1-p3 run on different clocks. The clock skew is visible in the
distances of t0 on each time line. TO represents a moment in absolute
(theoretical) time in this distributed system. For p2 it looks like e1 is coming
from the future (the sender timestamp is bigger than p2‘s current time). E2
looks ok for p3. Causal meta-data in the system can order the events
properly. Alternatively logical clocks and vector clocks {see Birman) can be
used to order events on each process and between processes. This does
NOT require a central authority (like an event system for CEP can provide)




Consistent Cuts vs Inconsistent Cuts

Y

)
. N

Y

e2

Consistent cuts produce causal possible events. With inconsitent cuts (red)
some events arrive before they have been sent. Consistency of cuts is
independent of simultaneous capture. (Birman 257)




Distributed Commit

2-Phase Commit

2-Phase Commit with communicating participants and
garbage collection

3-Phase Commit protocol

Goal Is to understand the assumptions behind those protocols and how they
are affected by failure models. Can they reach agreement or termination in
any case? This will lead over to the ,,FLP Impossiblity result®




Example of 2PC

currentTA

XAResourcel

XAResMerl

XAResource2

XAResMgr2

kegin

Y

Withdraw tmoney

place money

Y

Eegister resourg

e with coordinator

Eeadiwrite da

ita

Eegister resout

Y

ce with coordinator

Y

_ Work phase Eead'write| data
cotnmit "
. vole
Eeadiwrite data and prepare
2pc phase 1 o
Eeadfwrite data and prepare
- Do commit
Tell resource manager to commit
2pc phase 2 > Do commit

&

Tell resource mans

-

1get to cotnmit

Coordinator




Failure models in 2PC

Work phase:
- A participant crashes or is unavailable in work phase.
The coordinator will call for a rollback.

- The client crashes in work phase {(commit is not called). Coordinator
will finally time-out the TA and call rollback.

Voting Phase:

- If a resource becomes unavailable or has other problems, the
coordinator will call rollback

Commit Phase: (server uncertainty)

- a crashed server will consult the coordinator after re-start and ask for
the decision (commit or rollback)

Assumptions: Participants will retry forever. Participants will restart
eventually. If the coordinator crashes no progress can be made after
voting.




Special problems of distributed TA's

Resources: Participants in distributed TA’s use up many system
resources due to logging all actions to temporary persistent storage.
Also considerable parts of a system may get locked during a TA.

Coordinator — a single point of failure? Even the coordinator must
prepare for a crash and log all actions to temporary persistent storage.

Heuristic outcomes for transactions. Under certain circumstances the
outcome of a transaction may only follow a certain heuristic because

the real outcome could not be determined. (see exercises)




2PC with communicating participants

Requires third phase for garbage collection. Can still block if
coordinator and one participant crash.




Resources

-Guerrai et.al. Introduction to reliable distributed programming

- Ken Birman, Reliable Distributed Systems




